STHDA - Machine learning essentials

A very good guide book on STHDA about machine learning.

Supervised learning

regression analysis– predict continuous variable

Different methods for regression analysis:

  • Ordinary least squares (Chapter @ref(linear-regression))
    • Simple linear regression
    • Multiple linear regression
  • Model selection methods:
    • Best subsets regression (Chapter @ref(best-subsets-regression))
    • Stepwise regression (Chapter @ref(stepwise-regression))
  • Principal component-based methods (Chapter @ref(pcr-and-pls-regression)):
    • Principal component regression (PCR)
    • Partial least squares regression (PLS)
  • Penalized regression (Chapter @ref(penalized-regression)):
    • Ridge regression
    • Lasso regression

Regression Analysis

Regression Model Diagnostics

Regression Model Validation

Model Selection Methods

Classification– predict class/group variable

  • Logistic regression, for binary classification tasks (Chapter @ref(logistic-regression))
  • Stepwise and penalized logistic regression for variable selections (Chapter @ref(stepwise-logistic-regression) and @ref(penalized-logistic-regression))
  • Logistic regression assumptions and diagnostics (Chapter @ref(logistic-regression-assumptions-and-diagnostics))
  • Multinomial logistic regression, an extension of the logistic regression for multiclass classification tasks (Chapter @ref(multinomial-logistic-regression)).
  • Discriminant analysis, for binary and multiclass classification problems (Chapter @ref(discriminant-analysis))
  • Naive bayes classifier (Chapter @ref(naive-bayes-classifier))
  • Support vector machines (Chapter @ref(support-vector-machine))
  • Classification model evaluation (Chapter @ref(classification-model-evaluation))

Logistic Regression

Evaluation of Classification Model Accuracy

Advanced machine learning methods

Unsupervised learning

principal component analysis

Cluster analysis

Part I. Cluster Analysis Basics:

Part II. Partitioning Clustering methods:

Part III. Hierarchical Clustering:

Part IV. Clustering Validation and Evaluation Strategies :

Part V. Advanced Clustering:

CHENYUAN

CHENYUAN
Pursuing the dream and the best future

CHENYUAN Blog Homepage

因为不想遗忘! 在这个信息大爆炸的年代,最重要的是对知识的消化-吸收-重铸。每天学了很多东西,但是理解的多少,以及能够运用多少是日后成功的关键。作为一个PhD,大脑中充斥了太多的东西,同时随着年龄的增长,难免会忘掉很多事情。所以只是为了在众多教程中写一个自己用到的,与自己...… Continue reading